Stochastically bounded solutions of a nonlinear stochastic differential equations
نویسندگان
چکیده
منابع مشابه
Topological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *
The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.
متن کاملBounded Solutions: Differential Vs Difference Equations
We compare some recent results on bounded solutions (over Z) of nonlinear difference equations and systems to corresponding ones for nonlinear differential equations. Bounded input-bounded output problems, lower and upper solutions, Landesman-Lazer conditions and guiding functions techniques are considered.
متن کاملExistence of Nonoscillatory Bounded Solutions for a System of Second-order Nonlinear Neutral Delay Differential Equations
A system of second-order nonlinear neutral delay differential equations ( r1(t) ( x1(t) + P1(t)x1(t− τ1) )′)′ = F1 ( t, x2(t− σ1), x2(t− σ2) ) , ( r2(t) ( x2(t) + P2(t)x2(t− τ2) )′)′ = F2 ( t, x1(t− σ1), x1(t− σ2) ) , where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)× R2,R), i = 1, 2 is studied in this paper, and some sufficient conditions for existence of nonosc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2006
ISSN: 0377-0427
DOI: 10.1016/j.cam.2005.08.023